Licence-2 SFA
Parcours: Physique-Chimie

Epreuve de l'examen de Chimie Organique Année 2020-2021; Session 1 ECU 2 Durée : 1,5 heure Prof. Mamyrbékova Janat épouse Békro

Exercice 1 : (3 points) Nommer selon la nomenclature IUPAC les composés cidessous :

Solution:

1: 4-chloro-3-éthyl-2-isopropylhexan-1-ol 1point

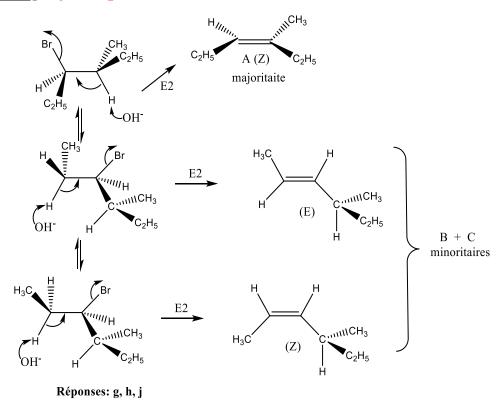
2: 2-éthyl-4-méthyl-3-(2-méthylbutyl)hepta-1,5-diène 1 point

3: 2-méthyl-3-propylcyclohexanecarbaldéhyde 1 point

Exercice 2: (4,5 points) Le (3R,4S)-3-bromo-4-méthylhexane traité par KOH alcoolique concentrée à chaud conduit à trois composés **A**, **B** et **C** selon un processus élémentaire. **B** et **C** sont des isomères de configuration et **A** est un isomère de constitution de B et C. Choisissez parmi les propositions suivantes celles qui sont exactes :

- a) A est actif sur la lumière polarisée.
- b) le mélange ($\bf B + \bf C$) est un mélange d'isomères Z et E. 0,25 points
- c) le mélange (B + C) est un mélange d'isomères R et S.
- d) A a une stéréochimie Z. 0,25 points
- e) A est le produit majoritaire. 0,25 points
- f) la réaction est une élimination de type E1.
- g) la réaction est une élimination de type E2. 0,25 points
- h) la réaction est régiosélective. 0,25 points
- i) le processus qui conduit au produit **A** est stéréospécifique car le mécanisme réactionnel fait intervenir un carbocation.
- j) le processus qui conduit au produit **A** est stéréospécifique car les atomes d'hydrogène et de brome qui sont éliminés, sont chacun portés par un carbone asymétrique de configuration absolue fixée. **0,25 points**

Licence-2 SFA
Parcours: Physique-Chimie


Epreuve de l'examen de Chimie Organique Année 2020-2021; Session 1 ECU 2 Durée : 1,5 heure Prof. Mamyrbékova Janat épouse Békro

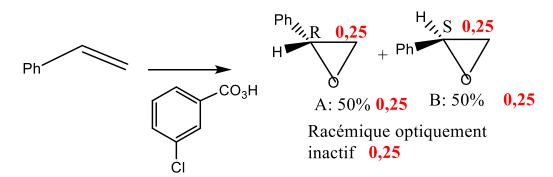
Solution 1,5 points

Br
$$C_2H_5$$
 C_2H_5 C_2H_5

NB: l'alcène majoritaire est déterminé grâce à la règle de Zaïtsev.

Solution: g,h,j 1,5 points

NB: l'alcène majoritaire est déterminé grâce à la règle de Zaïtsev. E2 se réalise en seule étape concertée. C'est une *trans-E* (ou *E-anti*) stéréospécifique.


Exercice 3: (5,5) points) Le phényléthylène est traité par l'acide 3-chloroperhydrobenzoïque pour conduire à un mélange de deux produits (stéréoisomères) $\underline{\mathbf{A}}$ et $\underline{\mathbf{B}}$. Le composé $\underline{\mathbf{B}}$, de configuration absolue S, est ensuite

soumis à l'action de LiAlH₄, donneur d'hydrure (H⁻), pour conduire, après hydrolyse, majoritairement à $\underline{\mathbf{C}}$. Le composé $\underline{\mathbf{C}}$ est enfin traité par le chlorure de thionyle (SOCl₂) et par chauffage pour conduire à $\underline{\mathbf{D}}$.

- 1- Ecrire les différentes réactions en précisant leur mécanisme
- **2-** Indiquer la configuration absolue éventuelle de tous les produits formés $\underline{\mathbf{A}}, \underline{\mathbf{B}}, \underline{\mathbf{C}}$ et $\underline{\mathbf{D}}$.
- **3-** Le mélange [A + B], obtenu lors de la première réaction a-t-il une activité optique?
- 4- Indiquer les réactions stéréospécifiques.

Solution

Réaction de Priléjaiev: oxydation ménagée:

Compléter le mécanisme ! 0,75 points

Ph
$$\frac{0,25}{\text{SN2}}$$
 Ph $\frac{\text{H}}{\text{SN2}}$ Ph $\frac{\text{H}}{\text{ER}}$ $\frac{0,25}{\text{CH}_3}$ $\frac{\text{H}}{\text{HO}}$ $\frac{0,25}{\text{CH}_3}$

<u>Régiosélectivité</u>: attaque du nucléophile majoritairement sur le C le moins substitué. Obtention d'un produit de configuration absolue définie (R) à partir d'un époxyde de configuration absolue définie (S): **réaction stéréospécifique**. **0,25 points**

Licence-2 SFA Parcours : Physique-Chimie

Epreuve de l'examen de Chimie Organique Année 2020-2021; Session 1 ECU 2 Durée : 1,5 heure Prof. Mamyrbékova Janat épouse Békro

H₃C $\stackrel{\text{H}}{=}_{R}$ $\stackrel{\text{O,25}}{=}_{O}$ $\stackrel{\text{Cl}}{=}_{Ph}$ $\stackrel{\text{Cl}}{=}_{Cl}$ $\stackrel{\text{H}}{=}_{O}$ $\stackrel{\text{O,25}}{=}_{Cl}$ $\stackrel{\text{H}}{=}_{O}$ $\stackrel{\text{O,25}}{=}_{Cl}$ $\stackrel{\text{H}}{=}_{Cl}$ $\stackrel{\text{O,25}}{=}_{Cl}$ $\stackrel{\text{H}}{=}_{Cl}$ $\stackrel{\text{O,25}}{=}_{Cl}$ $\stackrel{\text{H}}{=}_{Cl}$ $\stackrel{\text{O,25}}{=}_{Cl}$ $\stackrel{\text{Cl}}{=}_{Cl}$ $\stackrel{\text$

Exercice 4 : (3 points) Identifier les composés \underline{A} , \underline{B} et \underline{C} dans les réactions cidessous

Solution

$$\begin{array}{c} \text{CH}_3\text{MgI} \\ \text{HO} \\ \text{2-méthylbutan-1-ol} \\ \\ \text{CrO}_3, \text{Pyridine} \\ \text{2-méthylbutanal} \\ \\ \text{CrO}_3, \text{H}_2\text{SO}_4 \\ \\ \text{HO} \\ \end{array}$$

Acide 2-méthylbutanoïque

• Avec le Réactif de Collins (CrO₃, pyridine), nous avons une **oxydation ménagée** qui conduit à l'aldéhyde pour un alcool primaire.

•Avec le Réactif de Jones (CrO₃, H₂SO₄), nous avons une **oxydation complète** qui conduit directement à l'acide carboxylique pour un alcool primaire et à une cétone pour les alcools secondaires.

Exercice 5 (4 points)

La réaction de la propanone avec une solution aqueuse d'hydroxyde de sodium produit un nouveau composé $\underline{\mathbf{A}}$, $C_6H_{12}O_2$. Lorsque $\underline{\mathbf{A}}$ est chauffé avec HCl dilué, il se forme un composé $\underline{\mathbf{B}}$ ainsi que de l'eau.

- a) Donner la structure de $\underline{\mathbf{A}}$ et proposer un mécanisme expliquant sa formation;
- **b**) Donner la structure de $\underline{\mathbf{B}}$ et proposer un mécanisme expliquant sa formation.

Solution